MODELLING OF STEEL PLATE RESPONSE TO BLAST LOADING USING A COUPLED CFD/CSD METHODOLOGY Joseph D. Baum¹, Orlando A. Soto¹, Michael E. Giltrud², Rainald Löhner³, Charles Charman⁴, Janet Wolfson⁵, Gil Hegemier⁵, Karen Arnett⁵ ¹ SAIC, 1710 SAIC Dr, McLean, VA 22102, USA ⁴ C Squared, Anchorage, Alaska 99516, USA ## **ABSTRACT** This paper describes the results of a combined experimental and computational effort intended to validate predictions of a coupled CFD/CSD methodology. The coupled methodology was initially used to predict the response of a complex, steel multi-column and plate structure response to blast loading. As several interacting physical mechanisms control this process, it became too difficult to evaluate the prediction accuracy of any individual process. Hence, a simplified precision test of a single event, namely: the response of a single steel plate to a bare charge in close vicinity, was performed. Results of these tests and simulations are presented here. The results validated the capability of the coupled CFD/CSD methodology to model these events, and highlighted the role of minute experimental details on the overall results and conclusions. ² TDSH, Defense Threat Reduction Agency, Fort Belvoir, VA, 22060, USA ³ George Mason University, 4400 University Dr, Fairfax, VA 22030, USA ⁵ Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA